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Abstract 

Least squares support vector machine (LS-SVM) has an outstanding advantage of lower computational complexity than that of standard 

support vector machines. Its shortcomings are the loss of sparseness and robustness. Thus it usually results in slow testing speed and 

poor generalization performance. In this paper, a least squares support vector machine with L1 norm (LS-SVM-L1) is proposed to deal 

with above shortcomings. This method is equivalent to solve a linear equation set with deficient rank just like the over complete 

problem in independent component analysis (ICA). A minimum of 1-norm based object function is chosen to get the sparse and robust 

solution based on the idea of basis pursuit (BP) in the whole feasibility region. Some UCI datasets are used to demonstrate the 

effectiveness of this model. The experimental results show that LS-SVM-L1 can obtain a small number of support vector and improve 

the generalization ability of LS-SVM. 
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1 Introduction 

 

Support vector machines (SVM) [1, 2] is powerful new 

tools for data classification and function estimation. 

Recently SVM have received a lot of attention in the 

machine learning community because of their remarkable 

generalization performance. The SVM typically follows 

from the solution to a quadratic programming. Despite its 

many advantages, one problem is that the size of the matrix 

of the quadratic programming is directly proportional to 

the number of training points. Thus this greatly increases 

the computational complexity [3], especially for the 

problems which deal with mass da ta or need on-line 

computation. Least squares support vector machine just 

makes up for that shortcoming. 

Least squares support vector machine (LS-SVM) [4, 5] 

is equivalent to solve a set of linear equations instead of a 

quadratic programming. Because the  -insensitive loss 

function used in SVM is replaced by a sum square error 

loss function, the inequality restriction is replaced by the 

equation restriction. Thus this makes the least squares 

support vector machine achieve lower computational 

complexity. But there are some potential drawbacks for 

LS-SVM [6]. The first drawback is that the usage of the 

sum square error may lead to less robust estimates. 

Reference [6] presents a weighted LS-SVM to solve this 

issue. This method needs an interactive procedure to get 

optimal cost function and robust estimation gradually. The 

second drawback is that the sparseness of the data points 

is lost. The pruning method [7] is used to get the sparse 

solution by omitting a relative small amount of the least 

meaningful data points. It also needs a series of steps for 
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LS-SVM to retrain. A more sophisticated pruning method 

[8] introduces a procedure that the training samples be 

selected from a data set, and these training samples will 

introduce the smallest approximation error that can be 

omitted. Another method [9] deletes some columns of the 

coefficient matrix through a certain measure. When the 

final model is used to represent the original system, the 

performance would be hurt. 

Focusing on the above-mentioned questions, we 

propose a new method to improve the sparseness and 

robustness of the LS-SVM. In this method, a 1L  norm 

representation is used as the object function. And LS-SVM 

is used to characterize the system as a set of linear 

equations with deficient rank just like the overcomplete 

problem in independent component analysis (ICA) [10]. 

So the solution with the minimum 1L . Norm is got based 

on the idea of basis pursuit (BP) in the whole feasibility 

region [11, 12]. BP is closely connected with linear 

programming. So the proposed method is called least 

squares support vector machine with linear programming 

formulation (LS-SVM- 1L  Above contents are introduced 

in chapter 2. Then the performance of this method is 

examined by three examples. 

This paper is organized as follows. In section 2, we 

give the LS-SVM- 1L  classifier and regression 

formulations and then set up the corresponding solutions. 

Numerical test results represent in Section 3 shows that our 

LS-SVM- 1L  is of good sparse and robustness 

performance. Section 4 concludes the paper and introduces 

some future research directions. 
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2 LS-SVM with L1 norm 

 

2.1 LS-SVM-L1 CLASSIFIER 

 

Like least squares support vector machine, the object 

function for the LS-SVM-L1 is defined as: 
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For classification problems, it subjects to: 
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where kix ,  denotes the thk  component of the input vector

ix . It can be overcomplete dictionaries such as wavelet. 

By introducing Lagrange multipliers ki, , the 

corresponding Lagrangian is given by: 
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where ki,  is the Lagrange multiplier for the thk  

component of sample i . 

According to Kuhn-Tucker conditions, the following 

functions can be got: 
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Substitute Equations (4) and (6) into Equation (2), then 

Equation (2) is transformed to the following form: 
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Equations (5) and (7) can be written as the following 

matrix form: 
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The following equation is the standard form of LS-

SVM: 
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Compared Equation (8) with the standard form of LS-

SVM in Equation (10), we can find that the kernel mapping 

is executed in each component and the Lagrange multiplier 

ki,  can be seen as the weight for each component and 

sample other than only for each sample in other methods. 

Then the output is obtained: 
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Above function is equivalent to the sum of the sub-

function in different elements: 
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where )(xfk  represents the contribution for the output by 

each element. 

 

2.2 LS-SVM-L1 REGRESSION 

 

Similarly, LS-SVM-L1 for regression problem can be 

described as the following mathematical programming: 
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where the constant   is called the regularization parameter 

and )( ,kix  is a nonlinear mapping function. 

By introducing the Lagrange multipliers ki, , we 

obtain: 
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Similarly, Equation (14) is transformed to the 

following form: 
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So it is equivalent to solve the following equation set: 
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Then the output is obtained: 
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Above function is equivalent to the sum of the sub-

function in different elements: 
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2.3 FINDING SOLUTIONS 

 

From Equations (8) or (17), we can find that the new LS-

SVM is equivalent to solve a deficient rank linear equation 

set just like the over complete problem in ICA. Because 

the matrix A  is ,nmn  there are infinite solutions to 

Equations (8) or (17). It brings us a chance and challenge 

to get sparse solutions. There are many approaches 

presented to resolve this problem, including the method of 

Frames (MOF) and basis pursuit (BP) [11, 12]. 

Unlike MOF, BP replaces the 2L  norm with the 1L  

norm: 
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level. It improves the robustness for the final solution. Of 

course, we can use other optimization forms or algorithms 

according to the requirements of the problems. The 

flexibility is just the most advantages for this method. So 

the new LS-SVM method is called least squares support 

vector machine with linear programming formulation [13]. 

 

2.4 ALGORITHM 

 

The procedures to implement the LS-SVM-L1 can be 

summarized as the following steps: 

1) Data preprocess: firstly, the data is normalized for 

convenience. Then the input data is presented in the over 

complete forms. 

2) Initialization parameters: according to some criteria 

or experience, the coefficient   must be given some initial 

value. 

3) Construct formulation: the new model based on the 

LS-SVM is constructed according to the Equation (8) or 

(17). 

4) Solving: a linear programming with equality 

constrains ((21) and (22)) is solved to get the Lagrange 

coefficients   and b . 

5) Output: then the output is got according to Equation 

(12) or (19). 

6) Calculate errors: some defined measures are 

calculated according to the coefficients   and b  solved 

by step 4. 

If we aren’t satisfied with the results, change the 

coefficients and go back to step 2. 

 

3 Experiments analysis 

 

To illustrate the effectiveness of our approach, we report 

results on three datasets taken from the UCI Machine 
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learning Repository. These datasets are frequently used as 

benchmarks to compare the performance of different 

classification methods in the literature. The three disease 

datasets are the Wisconsin breast cancer dataset (WBCD), 

the heart disease dataset (HD) and the PIMA dataset. The 

first dataset is Wisconsin Diagnostic Breast Cancer 

dataset. It contains 699 records. Nine variables are used as 

the patients’ characteristics. The second dataset is heart 

disease dataset, which contains 270 records. Thirteen 

variables are used as the patients’ characteristics. The last 

dataset is PIMA dataset, which contains 768 records. Eight 

variables are used as the patients’ characteristics. 

The classification performance is measured by its 

specificity (T1), sensitivity (T2) and overall hit rate (T), 

which are the percent of correctly classified of healthy 

records, percent of correctly classified of patients and the 

percent of correctly classified in total, respectively. 

n

TNTP
Tratehitoverall


)( , (23) 

FPTP
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Tyspecificit
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3.1 EXPERIMENTAL RESULTS ON THREE UCI 

DISEASE DATASETS 

 

Firstly, the data is normalized. For the LS-SVM- 1L  

classifier, the Gaussian kernel is used. So the kernel 

parameter and regularization parameter   need to be 

chosen. Table 1 shows test set correctness, using the LS-

SVM- 1L  with various parameters   when 2  is equal to 

1000, under ten-fold cross validation for the above 

mentioned dataset. 

The column titled NSV is the number of support 

vectors selected from the training samples. 

From Table 1, it can be seen that the number of 

selected support vectors is gradually increasing with the 

increase of  . A bigger parameter   makes the value of 

coefficient matrix decrease in constraint Equation (22) so 

that the constraint can be satisfied. As a result, the sparse 

of Lagrange ki,  becomes bad. It tells us that only eight 

support vectors can achieve the best result: the average 

specificity is 96.57%, the average sensitivity is 99.48% 

and the average overall accuracy is 97.59%. This 

demonstrates that the proposed method is of good 

generalization ability. 

The ten-fold experimental results of LS-SVM- 1L  

using various kernel parameter are illustrated in Table 2 

when   is set to 52 . The change of kernel parameter 

has minor effect on degrading the classification accuracy 

when the parameter   is fixed. This shows that our 

proposed method is very robust. 

The Specificity (T1), Sensitivity (T2), overall hit rate 

(T), number of selected features for three datasets 

experimental results using LS-SVM- 1L  approach are 

shown in Table 3. 

From Table 3, we can see that this model achieve good 

classification results using several features. It is shown that 

a reasonable feature extraction can improve the 

performance of the learning algorithm greatly. So this 

model is very simple and has inexpensive computation 

cost. 

 

3.2 COMPARISON WITH OTHER CLASSIFIER 

MODELS 

 

In order to further evaluate the effectiveness of the LS-

SVM- 1L  model, the classification results are compared 

with some other methods using the same dataset, such as 

SVM and GA-based approach, in which the former 

methods cannot select features while the later can select 

features subset. The results of the GA-based models 

quoted from the reference [14]. Table 4 summarizes the 

T1, T2 and T accuracy of the three models. From Table 4, 

we can draw the conclusions as follows: 

For the breast cancer dataset and PIMA, LS-SVM- 1L  

model has the best accuracy classification capability in 

comparison with other three models. It correctly classifies 

99.48% of ill instances and 96.57% of total ones for the 

WBCD. These results indicate that our method is very 

efficient in binary classification problem. But the GA-

based approach only selects one feature, which decreases 

its classification accuracy. The GA-based model achieves 

the best classification accuracy and LS-SVM- 1L  achieves 

the second best results for the heart disease datasets. 

In general, the LS-SVM- 1L can provide efficient 

alternatives in conducting classification tasks. 

 

TABLE 1 Ten-fold experimental results of LS-SVM-
1L  using various parameter   (

2 5000  ) 

Methods NSV T1 T2 Overall 

20.1 2 96.32 99.48 97.32 
21 2 96.32 99.48 97.32 
25 3 96.57 99.48 97.5 
210 5 96.08 97.38 96.49 
250 6 45.84 88.48 73.29 
2100 6 50.49 62.31 54.26 
2500 6 50.49 62.31 54.26 
2100 7 50.49 62.31 54.26 
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TABLE 2 Ten-fold experimental results of LS-SVM-
1L  using different kernel parameter (  =

52 ) 

 

TABLE 3 experimental results using LS-SVM- 
1L  

Database NSV T1 T2 T 

WBCD 2 99.48 96.57 97.59 

HD 3 87.98 83.64 86.93 

PIMA 3 82.51 75.166 78.02 

 

TABLE 4 comparison with experimental results of three models 

Method Accuracy WBCD HD PIMA 

SVM 
T1 30.72 33.33 5.33 
T2 100 80.52 95.34 

T 78.01 54.71 35.92 

GA-based approach 

T1 97.87 94.47 73.35 
T2 89.96 95.11 87.04 

T 96.19 95.3 74.2 

Number of selection 
features 1 5.4 3.7 

LS-SVM-L1 

T1 99.48 87.98 82.51 

T2 96.57 83.64 75.16 

T 97.59 86.93 78.02 

Number of selection 

features 2 3 3 

 

5 Conclusion 

 
Unlike SVM and weighted LS-SVM, the LS-SVM- 1L  is 
equivalent to get the minimum of a sum absolute error in 
the feasibility region. So this method can improve the 
robustness and get the sparseness for the solution 
simultaneously. Another advantage is that it is equivalent 
to solve a linear programming and do not increase the 
computational burden that much. In addition, the output of 
the LS-SVM- 1L  can be viewed as a weighted sum for 
different components. This makes the output more 
understandable. 

Through the practical data experiment, we have 
obtained good classification results using selected 

features. And these show that LS-SVM- 1L  is of good 
performance in data classification. Thus the LS-SVM- 1L  
provides efficient alternatives in conducting data 
classification tasks. Future studies will aim at finding the 
law existing in the parameters’ setting. Generalizing the 
rules by the features that have been selected is another 
further work. 
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